Химичим и едим! Журнал Eclectic

Химичим и едим! Журнал Eclectic

Мифы о высокой температуре

Миф 1. Чем тяжелее болезнь, тем выше температура

Юрий КАЦ, врач-рефлексотерапевт, к. м. н:

— Подъём температуры зависит не от тяжести заболевания, а от особенностей организма. Чем моложе человек, чем крепче иммунитет, тем выраженнее у него температурная реакция. Практически без лихорадки протекают болезни у стариков и истощённых людей с ослабленным иммунитетом.

Миф 2. Температура полезна — она сжигает вирусы и микробы

Александр Карабиненко, профессор РГМУ:

— Патогенные микроорганизмы «сжигает» только очень высокая температура — выше 41°C, которая однозначно вредна для организма. При температуре тела 41°С нагрузка на сердце возрастает в 5-6 раз. При температуре 42°C в организме начинает коагулировать (сворачиваться) белок.

Миф 3. Температура поднимается только во время болезни

Юрий Вяльба, врач-психотерапевт:

— Физиологическое повышение температуры (до 37,5°C) возникает от перегрева, при активной физической работе, при стрессах или сильных переживаниях. У детей температура может повыситься от сильного плача, тёплой одежды или горячей еды. Для некоторых людей повышенная температура — норма. Исследователи из Мэрилендского университета, обследовав 148 здоровых мужчин и женщин в возрасте от 18 до 48 лет, установили, что нормальная температура может варьироваться в пределах от 35,5 до 37,7°С.

Миф 4. Если болезнь протекает с высокой температурой, выздоровление наступает быстрее

Александр Карабиненко:

— Это справедливо лишь в отношении вирусных заболеваний — стремительное начало гриппа чаще всего заканчивается быстрым выздоровлением. Для многих заболеваний характерно стойкое, длительное повышение температуры.

Миф 5. Температуру можно определить, пощупав лоб и руки

Сергей Никонов, профессор НЦССХ:

— Из-за испарины лоб может оставаться прохладным даже при очень высокой температуре. Тактильно температуру надёжнее определять в верхней части живота.

Как жар убивает клетки

При превышении определённой температуры клетка приходит в негодность и умирает. Одно из простейших объяснений такой непереносимости жары состоит в том, что необходимые для жизни белки – те, что извлекают энергию из еды или солнечного света, обороняются от вторжений, уничтожают отходы и т.п. – часто обладают удивительно точной формой. Начинаясь как длинные нити, они затем скручиваются в виде спиралей, «заколок для волос» и других форм, диктуемых последовательностью их составных частей. И эти формы играют огромную роль в их деятельности. Но когда температура начинает расти, связи, удерживающие белковые структуры, нарушаются: сначала самые слабые, а затем и сильные. Логично, что распространяющаяся потеря белковой структуры должна быть летальной, но до последнего времени детали того, как именно это убивает перегретые клетки, были неясны.

Теперь же биофизики из Швейцарской высшей технической школы Цюриха изучили поведение каждого белка в клетках четырёх различных организмов при повышении температуры. Это исследование и богатый набор собранных данных, опубликованный в журнале Science, показали, что при температуре, достаточной для смерти клетки – человеческой, или же клетки кишечной палочки Escherichia coli – разрушаются лишь несколько ключевых белков. Более того, обилие белков в клетках оказалось неожиданным образом связанным с их стабильностью. Исследования позволили учёным бегло ознакомиться с фундаментальными правилами, по которым выстроена работа белков и их упорядочивание, и последствия которых, как стало понятно, простираются гораздо дальше простой смерти от жары.

Паола Пикотти, биофизик, руководивший работой, объяснила, что эксперименты отталкивались от старых и нерешённых вопросов: почему некоторые клетки выживают при высоких температурах, а другие – умирают? Бактерия Thermus thermophilus счастливо живёт в горячих источниках и в домашних нагревателях [при оптимальной температуре в 65 °C – прим. перев.], тогда как клетки E. coli чахнут при температурах выше 40 °C. Убедительные доказательства говорят о том, что дело тут в разной стабильности белков этих организмов. Но следить за белком, находящимся в живой клетке, что было бы идеальным методом изучения, очень неудобно. Изолирование белка в пробирке не даёт всех ответов, поскольку внутри организма белки сбиваются вместе и влияют на химию друг друга, или же поддерживают друг друга в необходимой форме. Чтобы понять, что именно и почему разваливается, необходимо наблюдать за белками в то время, когда они всё ещё влияют друг на друга.

Как тепло уничтожает белки


1) Первичная структура белков – это длинные цепочки аминокислот, объединённые в заданные генами последовательности.
2) Вторичная структура – это аминокислота, которая также свёртывается в конфигурации, удерживаемые слабыми межмолекулярными связями.
3) Третичная структура – слабые связи, стабилизирующие расположение прямых и скрученных участков трёхмерной структуры белка. Их расположение позволяет белку соединяться с нужными молекулами.


Тепловая смерть. Слабые связи теряют способность удерживать третичную и вторичную структуры, и белок денатурирует, то есть разворачивается. Но не все белки разворачиваются при одной температуре – окружение белка в клетке может придавать ему дополнительную стабилизацию.

Чтобы решить поставленную задачу, команда разработала автоматизированную процедуру наблюдения. Они разрезали клетки и нагревали их содержимое поэтапно, выпуская на каждом этапе ферменты, разделявшие белки. Эти ферменты особенно хорошо разрезают развернувшиеся белки, поэтому исследователи на основе остатков разрезанных белков могли судить о том, какие белки развалились при заданной температуре. Таким образом им удалось построить денатурационные кривые для каждого из тысяч изученных белков. Дуги кривых идут от нетронутой структуры белка при комфортабельной для него температуре до полностью развёрнутого состояния при высокой температуре. Для поиска различий между кривыми разных видов живых существ, были проведены эксперименты над клетками людей, E. coli, T. thermophilus и дрожжей. «Исследование было прекрасным», – сказал Алан Драммонд [Allan Drummond], биолог из Чикагского университета, имея в виду как масштаб, так и точность процесса.

Читайте также:  Как остановить рвоту у взрослых и детей в домашних условиях

Во время наблюдений было ясно видно, что белки всех живых существ не разворачиваются все сразу при повышении температуры. «Мы увидели, что лишь небольшое подмножество белков разрушилось на самых ранних стадиях, – сказала Пикотти, – и это были ключевые белки». На диаграмме с переплетениями межбелковых связей самые хрупкие белки из этого небольшого подмножества часто обладали большим количеством связей, что означает, что они влияют на множество процессов, происходящих в клетках. «Без этих белков клетки не могут работать, – сказала Пикотти. – Когда они пропадают, вся сеть разрушается». И вместе с ней, очевидно, останавливается и жизнь клетки.

Этот парадокс – самые важные белки оказываются самыми хрупкими – может быть отражением того, как эволюция создала их для выполнения соответствующих задач. Если у белка есть множество ролей, его нестабильность и склонность к разворачиванию и повторному сворачиванию может стать преимуществом, поскольку она может позволить ему принимать разные формы, подходящие к разным задачам. «Многие из этих ключевых белков обладают большой гибкостью, что и делает их менее стабильными», но при этом наделяет их способностью связываться с различными целевыми молекулами в клетке, пояснила Пикотти. «Скорее всего, именно так они справляются со своими функциями. Это некий компромисс».

Тщательнее изучив E. coli, для которой собранные данные получились наиболее качественными, исследователи обнаружили и связь между обилием белка – количеством его копий в клетке – и его стабильностью. Чем больше копий белка делает клетка, тем больше температура требуется для его уничтожения. При этом оказывается, что большое количество копий не коррелирует с критичностью белка для выживания. Некоторые ключевые белки встречаются очень редко. Эта связь между обилием и надёжностью подтверждает идею, выдвинутую Драммонд ещё лет десять назад – у клеточной системы, изготавливающей белки, есть тенденция к тому, чтобы периодически допускать ошибки. Ошибка обычно дестабилизирует белок. Если этот белок оказывается распространённым, и такой белок в клетке появляется сотню или тысячу раз в день, тогда неправильно свернувшиеся копии, произведённые в больших количествах, могут засорить клетку. Таким образом организму выгодно было бы эволюционировать так, чтобы наиболее распространённые белки были бы и наиболее стабильными, что подтверждают полученные командой Пикотти данные.

Чтобы понять, какие качества белка делают его стабильным, исследователи сравнили данные E. coli и T. Thermophilus. Белки E. coli начали разваливаться при 40 °C, и практически полностью деградировали при 70 °C. Но при этой температуре белки T. thermophilus только начинали испытывать дискомфорт – некоторые из них держали форму и при 90 °C. Команда обнаружила, что у T. thermophilus белки обычно были короче, и некоторые типы форм и компонентов белка чаще встречались в самых стабильных из них.


Пример кривой из эксперимента. По вертикали – процент развернувшихся белков, по горизонтали – температура. Вертикальная черта – температура, при которой клетки начинают умирать. Для этого нужно развернуться всего нескольким ключевым белкам.

Открытия могут помочь исследователям разработать белки, чья стабильность подстроена под их задачи. Во многих промышленных процессах, где используются бактерии, повышение температуры повышает и отдачу – но довольно скоро бактерии начинают умирать от жары. Было бы интересно узнать, сможем ли мы стабилизировать бактерии, сделав ключевые белки более устойчивыми к температуре – сказала Пикотти.

Обилие информации по поводу того, насколько легко разворачиваются определённые белки, сильно порадовало некоторых биологов. От стабильности белка напрямую зависит вероятность его агрегации: появления комков неразвернувшихся белков, прилипающих друг к другу. Агрегаты белков могут обернуться кошмаром для клеток и мешать выполнению главных задач. К примеру, их обвиняют в появлении некоторых серьёзных неврологических проблем, таких, как болезнь Альцгеймера, при которой бляшки развернувшихся белков засоряют мозг.


Паола Пикотти

Но это не значит, что агрегация происходит только у организмов, страдающих определёнными заболеваниями. Наоборот, исследователи поняли, что возможно, она происходит постоянно, и что у здоровых клеток есть методы, при помощи которых они справляются с нею. «Я думаю, что всё чаще это явление признаётся очень распространённым», – сказал Микель Вендрусколо [Michele Vendruscolo], биохимик из Кембриджского университета. «Большинство белков неправильно сворачиваются и агрегируют внутри клеток. Самое важное, что установила команда Пикотти, это тот отрезок времени, в котором какой-либо выбранный белок находится в развёрнутом состоянии. Это время определяет степень возможной агрегации белка». Некоторые белки почти никогда не разворачиваются и не агрегируют, другие ведут себя так в определённых условиях, а иные делают так постоянно. По словам биохимика, детальное описание белков в новой работе сильно облегчит изучение и понимание этих различий между белками. Некоторые из денатурационных кривых говорят о том, что их белки агрегируют после того, как развернулись. «У них получилось отследить оба этапа – как развёртывание, так и последующую агрегацию, – сказал Вендрусколо. – В этом вся прелесть этого исследования».

И хотя многие учёные интересуются агрегатами из-за наносимого ими ущерба, некоторые смотрят на это явление с другой точки зрения. Драммонд говорит, что становится ясным, что некоторые агрегаты – это не просто кусочки мусора, болтающиеся в клетке. Они содержат активные белки, продолжающие выполнять свои функции.

Представьте, что вы издалека видите дым, поднимающийся из какого-либо здания, говорит Драммонд. Вокруг здания вы видите некие фигуры, и вы представляете себе, что это тела, извлечённые из руин. Но если вы подойдёте ближе, вы можете обнаружить, что это живые люди, спасшиеся из горящего здания, ждущие, пока происшествие закончится. Так получается с исследованием агрегатов, говорит Драммонд: исследователи обнаруживают, что белки в агрегатах оказываются не жертвами, а выжившими. «Сейчас вообще появляется новая область науки, растущая взрывными темпами», – говорит он.

Читайте также:  Антидепрессанты и седативные препараты

Комкование белков может оказаться не признаком повреждений, а способом для белка сохранять свои функции в сложной ситуации. Оно может, к примеру, защищать их от окружающей среды. А когда условия улучшаются, белки могут покидать агрегаты и сворачиваться заново. «Их форма меняется в зависимости от температуры таким образом, что на первый взгляд это кажется неправильным сворачиванием, – говорит Драммонд. – Но в этом есть какой-то иной смысл». В статье в журнале Cell от 2015 года он с коллегами определил 177 белков дрожжей, сохранивших свои функции уже после попадания в агрегаты. В работе, вышедшей в марте, эта команда описала, что если изменить один из белков так, чтобы он не смог агрегировать, то это приводит к серьёзным проблемам в функционировании клетки.

В общем и целом, работа утверждает, что белки – удивительно динамичные структуры. Сначала они могут показаться жёсткими машинами, работающими над зафиксированными задачами, для которых подходит одна определённая форма. Но на самом деле белки могут принимать несколько различных форм во время своей нормальной работы. И в нужное время их форма может меняться так сильно, что может показаться, будто они портятся, хотя на самом деле они наоборот укрепляются. На молекулярном уровне жизнь может представлять собой постоянные соединения и разъединения связей.

Почему тепло убивает клетки?

Если температура поднимется выше определенного порога, клетка коллапсирует и умрет. Одно из самых простых объяснений этого недостатка теплостойкости состоит в том, что белки, необходимые для жизни, — те, которые извлекают энергию из пищи или солнечного света, борются с вторженцами, уничтожают отходы и так далее — чаще всего имеют невероятно точную форму. Они начинаются с длинных цепочек, затем сворачиваются в спирали и другие конфигурации, продиктованные последовательностью их компонентов. Эти формы играют важную роль в том, что они делают. Но когда все начинает нагреваться, связи, поддерживающие структуры белков, разрушаются: сперва самые слабые, а затем, когда температура поднимается, и сильные. Очевидно, разрушение белковой структуры должно быть смертельным, но до недавних пор точные подробности того, как или почему это убивает перегретые клетки, были неизвестны.

Все любят, когда тепло, но не клетки организма

И вот биофизики из Политехнического университета в Цюрихе, Швейцария, изучили поведение каждого белка в клетках четырех разных организмов по мере увеличения тепла. Это исследование и его богатый данными фон, недавно опубликованные в Science, показали, что при температуре смерти клетки — будь то клетка человека или клетка кишечной палочки — распадаются только несколько важнейших белков. Более того, изобилие белка в клетке, по-видимому, показывает интригующую связь со стабильностью белка. Эти исследования предлагают взглянуть на основные правила, которые определяют порядок и беспорядок белков — правила, которые, по мнению исследователей, будут иметь последствия, выходящие далеко за рамки простой смерти клеток.

Почему сворачивается белок при нагреве

Паола Пикотти, биофизик, руководивший исследованием, объяснил, что эти эксперименты вышли из старого, тернистого вопроса: почему некоторые клетки выживают при высоких температурах, а другие умирают. Бактерия Thermus thermophilus счастливо живет в горячих источниках и даже бытовых водонагревателях, в то время как E. coli распадается уже при 40 градусах Цельсия. Есть сильные свидетельства в пользу того, что важны именно различия в стабильности белков каждого организма. Но изучать поведение белка, когда он еще находится в живой клетке, — это идеальный способ понять его, и это очень непросто. Выделение белка в пробирке дает лишь частичные ответы, потому что внутри организма белки соединяются вместе, изменяя химию друг друга или удерживая друг друга в нужной форме. Чтобы понять, что распадается и почему, нужно изучать белки, пока они влияют друг на друга.

Что происходит с белком при нагреве

Чтобы решить эту проблему, команда ученых разработала томительный автоматизированный рабочий процесс, в котором они разделяют открытые клетки и нагревают их содержимое поэтапно, выпуская разрезающие белки ферменты в смеси поэтапно. Эти ферменты особенно хороши при нарезке развернутых белков, поэтому исследователи смогли определить, при какой температуре отказывал каждый фрагмент белков. Таким образом, они изображают неразвернутую, или денатурирующую, кривую для каждого из тысяч изучаемых ими белков, показывая, как эти дуги переходят из интактных структур при комфортных температурах в состояние распада с повышением температуры. Чтобы увидеть, как эти кривые различаются у видов, ученые выбрали четыре вида — людей, E. coli, T. thermophilus и дрожжи.

«Это прекрасное исследование», говорит Аллан Драммонд, биолог Чикагского университета, отмечая масштаб и деликатность процесса.

Влияние тепла на клетки

Одно из самых очевидных наблюдений заключалось в том, что у каждого вида белки не разворачивались массово при повышении температуры. Вместо этого первыми коллапсировали белки очень небольшого подмножества, говорит Пикотти, и это были важнейшие белки. Чаще всего эти белки были тесно связаны, то есть влияли на множество процессов в клетке. «Без них клетка не может функционировать, — говорит Пикотти. — Когда они уходят, разрушиться может целая сеть». И, очевидно, жизнь клетки.

Читайте также:  Можно ли анальгин детям от температуры

Этот парадокс — что некоторые из самых важных белков оказываются самыми деликатными — может отражать, как эволюция сформировала их для их работы. Если у белка много ролей, он может получить выгоду из нестабильности, оказавшись подвижным к фолдингу и анфолдингу, то есть к свертыванию и развертыванию, потому что это позволит ему принимать много разных форм в зависимости от цели. Многие из важных белков обладают повышенной гибкостью, что делает их более нестабильными, но при этом гибкими и способными связываться с самыми разными целевыми молекулами в клетке, объясняет Пикотти. Примерно так они способны выполнять свои функции — это своего рода компромисс.

При ближайшем рассмотрении E. coli, данные которой были самыми чистыми, ученые также обнаружили взаимосвязь между изобилием белка — того, сколько копий его плавает вокруг клетки — и его стабильностью. Чем больше копий делает клетка, тем больше тепла требуется, чтобы разбить белок. Стоит также отметить, что изобилие не всегда коррелирует с жизненной важностью: некоторые редкие белки тоже важны. Эта связь между изобилием и устойчивостью была представлена Драммондом на уровне идеи еще десять лет назад, когда он поставил под сомнение тенденцию клеточной машины делать случайные ошибки. Ошибка обычно дестабилизирует белок. Если этот белок распространен и производится сотнями или тысячами в клетке ежедневно, тогда неправильно развернутые копии в больших количествах могли бы стать фатальными для клетки. Организму было бы кстати создавать версии обычных белков с дополнительной стабильностью, и данные команды Пикотти это отражают.

Так выглядит белок под микроскопом

Чтобы исследовать, какие качества обеспечивают белок тепловой устойчивостью, ученые сравнили данные с E. coli и T. thermophilus. Белки E. coli начинают распадаться при 40 градусах Цельсия и по большей части распадаются к 70 градусам. Но при этой температуре белкам T. termophilus только-только становится неуютно: некоторые из них сохраняют свою форму до 90 градусов Цельсия. Ученые обнаружили, что белки T. termophilus, как правило, короткие, а некоторые виды форм и компонентов появляются чаще в самых стабильных белках.

Белок, устойчивый к теплу

Эти результаты могут помочь исследователям разработать белки с устойчивостью, тщательно настроенной на их потребности. Во многих промышленных процессах, которые включают бактерии, повышение температуры увеличивает урожай — но до тех пор, пока бактерии не умирают от тепла. Было бы интересно узнать, можем ли мы стабилизировать бактерии, создав несколько белков, которые будут более устойчивы к повышению температуры, говорит Пикотти.

Помимо всех этих наблюдений, обилие информации о том, как разворачивается каждый белок, приводит биологов в восторг. Стабильность белка является прямым показателем того, насколько вероятно он образует белковые агрегаты: скопления развернутых белков, которые липнут друг к другу. Агрегаты, зачастую являющиеся кошмаром для клетки, могут вмешиваться в важные задачи. Например, их связывают с некоторыми серьезными неврологическими состояниями, такими как болезнь Альцгеймера, когда бляшки денатурированных белков начиняют мозг.

Вот что происходит с белком при нагреве

Но это не означает, что агрегация происходит только у людей, страдающих от этой болезни. Напротив, ученые понимают, что это может происходить постоянно, без очевидных источников стресса, и что здоровая клетка может с этим справиться.

«Я думаю, это все чаще признается распространенным явлением», говорит Мишель Вендрусколо, биохимик из Университета Кембриджа. «Большинство белков на самом деле накапливаются в клеточной среде. Пиккоти получила важную информацию о промежутке времени, в котором определенный белок пребывает в неразвернутом состоянии. Этот промежуток определяет степень, с которой он накапливается».

Некоторые белки почти никогда не разворачиваются и не накапливаются, другие делают это при определенных условиях, третьи делают это постоянно. Подробная информация в новой работе облегчает изучение различий в том, почему они вообще существуют и что означают. Некоторые кривые денатурирования даже демонстрируют паттерны, которые говорят о том, что белки накапливаются после развертывания.

Агрегаты белка

Хотя многие ученые заинтересованы в агрегатах из-за ущерба, который они вызывают, другие думают об этом явлении иначе. Драммонд говорит, что стало очевидно, что некоторые агрегаты являются не просто мешками с мусором, плавающим по клетке; скорее, они содержат активные белки, которые продолжают делать свое дело.

Представьте, что вы видите издалека дым, поднимающийся от здания. Все вокруг него — это формы, которые вы принимаете за тела, вытащенные из обломков. Но если приблизиться, можно обнаружить, что это живые люди, которые вырвались из горящего здания и ждут скорую помощь. Примерно такое происходит при изучении агрегатов, говорит Драммонд: ученые обнаруживают, что вместо того, чтобы быть жертвами, белки в агрегатах тоже иногда могут быть выжившими. Это мощная тенденция биологии в настоящее время.

В целом эта работа предполагает, что белки являются любопытно динамичными структурами. Сначала они похожи на жесткие машины, работающие над определенными фиксированными задачами, для которых им нужна одна конкретная форма. Но на самом деле белки могут принимать разные формы в ходе своей нормальной работы. В случае необходимости их формы могут меняться так радикально, что будет казаться, будто они умирают, хотя в действительности они укрепляются. На молекулярном уровне жизнь может быть постоянным распадом и обновлением.

Ссылка на основную публикацию
Хилак форте; инструкция по применению, описание, вопросы по препарату
Хилак форте : инструкция по применению Состав 100 мл содержат: Действующие вещества: Беззародышевый водный субстрат продуктов обмена веществ Escherichia coli...
Хачатурова Марина Анатольевна, аллерголог, Москва, отзывы, 5 оценок, места приёма
Хачатурова Марина Анатольевна , Москва Места приёма Клиника доктора Волкова Адрес: г. Москва, ул. Архитектора Власова, д. 6. Телефон: актуальный...
Хватает ли моему ребенку молока; Подсказки для кормящих мам
Диарея у грудного ребенка: причины, симптомы, лечение Любая мама знает, что малыши какают часто: у ребенка на естественном вскармливании частота...
Химиотерапия как облегчить тяготы лечения Здоровая жизнь Здоровье Аргументы и Факты
Химиотерапия при лечении детей с онкологическими заболеваниями Что такое химиотерапия? Химиотерапия — это лечение рака с помощью мощных лекарственных препаратов....
Adblock detector